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Abstract
We study the asymptotic behaviour, as time goes to infinity, of the Fisher-KPP 
equation ∂tu = ∆u + u − u2  in spatial dimension 2, when the initial condition 
looks like a Heaviside function. Thus the solution is, asymptotically in time, 
trapped between two planar critical waves whose positions are corrected by 
the Bramson logarithmic shift. The issue is whether, in this reference frame, 
the solutions will converge to a travelling wave, or will exhibit more complex 
behaviours. We prove here that both convergence and nonconvergence may 
happen: the solution may converge towards one translate of the planar wave, 
or oscillate between two of its translates. This relies on the behaviour of the 
initial condition at infinity in the transverse direction.

Keywords: KPP equations, nontrivial dynamics, logarithmic shift 
Mathematics Subject Classification numbers: 35K57, 35B40, 35B35, 35C07

1.  Introduction

The paper is devoted to the large time behaviour of the solution of the reaction-diffusion 
equation

∂tu = ∆u + f (u), t > 1 , (x, y) ∈ R2

u(1, x, y) = u0(x, y), (x, y) ∈ R2.
� (1)
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We will take

f (u) = u(1 − u) if u ∈ [0, 1] and f (u) = 0 if u /∈ [0, 1];

thus f is, in reference to the celebrated paper [17], said to be of the Fisher-KPP type. The initial 
datum u0 is in C(R2) and there exist x2 < x1 such that

1 − H(x − x2) � u0(x, y) � 1 − H(x − x1)� (2)

where H is the Heaviside function. Then, since f is globally Lipschitz on R , there exists (see 
for instance [16]) a unique classical solution u(t, x, y) in C([1,+∞[×R2, (0, 1)) to equation (1) 
emanating from such u0.

The assumptions on f imply that zero and one are, respectively, unstable and stable equilib-
ria for the ODE ζ̇ = f (ζ). For the PDE (1), the state u ≡ 1 invades the state u ≡ 0. Equation (1) 
admits one-dimensional travelling fronts U(x − ct) if and only if c � c∗ = 2 where the profile 
U, depending on c, satisfies

U′′ + c U′ + f (U) = 0, x ∈ R,� (3)

together with the conditions at infinity

lim
x→−∞

U(x) = 1 and lim
x→+∞

U(x) = 0.� (4)

Any solution U to (3) and (4) is a shift of a fixed profile Uc: U(x)  =  Uc(x  +  s) with some fixed 
s ∈ R. The profile Uc∗ at minimal speed c*  =  2 satisfies

Uc∗(x) = (x + k) e−x + O(e−(1+δ0)x) , as x → +∞

for some universal constants k ∈ R and δ0 > 0, see [7] and [25].

1.1.  Convergence for the KPP equation: related works

The large time behaviour of the one dimensional problem

∂tu = ∂xxu + f (u), t > 1 , x ∈ R� (5)

has a history of important contributions. One of the first, and perhaps most well-known one, is 
the pioneering KPP paper [17]. Kolmogorov, Petrovskii and Piskunov proved that the solution 
of (5), starting from 1 − H(x), converges to Uc* in shape: there is a function

σ∞(t) = 2t + o(t),

such that

lim
t→+∞

u(t, x + σ∞(t)) = Uc∗(x) uniformly in x ∈ R.

The main ingredient in [17] is the monotonicity of ∂xu on the level sets of u. This argument 
was recently revisited by Ducrot–Giletti–Matano [10], Nadin [19], for results in the same 
spirit, concerning one-dimensional inhomogeneous models.

The second one makes precise the σ∞(t): in [5, 6], Bramson proves the following

Theorem 1.1.  There is a constant x∞, depending on u0, such that

σ∞(t) = 2t − 3
2
ln t − x∞ + o(1), as t → +∞.

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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The fact that there is a nontrivial logarithmic shift in σ∞ can be understood as follows: from 
the maximum principle, we have u(t, x) � ū(t, x) where ̄u solves the linear PDE ∂tū = ∆ū + ū 
starting from 1  −  H. Since

ū(t, x) = et
∫

R

e−(x−y)2/4t
√

4πt
(1 − H(y))dy =

et

2

(
1 − erf

(
x√
4t

))
∼+∞

√
tet

x
√
π

e−x2/4t

with erf(x) = 2√
π

∫ x
0 e−z2

dz, we see that

lim sup
t→+∞

(
max
x�A

u(t, 2t − ln t
2

+ A)
)

−→ 0 as A → +∞ .

This shows that for any m ∈ (0, 1), there exists A ∈ R such that the m-level set of u 
Sm(t) = {x > 0 | u(t, x) = m} satisfies max Sm(t) � 2t − ln t

2 + A for A large enough. This 
yields that the positions of the level sets Sm(t) should be corrected to the left of the 2t position 
by a term that grows at least logarithmically for large times. This heuristic argument does not 
yield an equivalent for the correction, and, in particular, does not prove that the correction 
should be logarithmic. However it explains why a nontrivial term has to be there. The precise 
computation of the delay is presented in section 2.

Theorem 1.1 was proved through elaborate probabilistic arguments. A natural question 
was thus to prove theorem 1.1 with purely PDE arguments. In that spirit, a weaker version, 
precise up to the O(1) term, is the main result of [15] (which is actually the PDE counterpart 
of [5]): σ∞(t) = 2t − 3

2 ln t + O(1) as t → +∞ . Bramson’s theorem 1.1 is fully recovered 
in [20], with once again simple and robust PDE arguments. The dynamics beyond the shift 
has also been the subject of intense studies. Define σ(t) = sup{x > 0 | u(t, x) = 1

2}. The issue 
is to determine the asymptotic behaviour as time goes to infinity of σ(t)− (2t − 3

2 ln t − x∞) 
where the constant x∞, depending only on u0, is given by theorem 1.1. Let us mention the 
paper [11], which proposes a universal behaviour by means of formal asymptotic arguments. 

See also [26]. The universal correction σ∞(t) = 2t − 3
2 ln t + x∞ − 3

√
π√
t
+ O

( 1
t1−γ

)
 for any 

γ ∈ (0, 1/8) is obtained, in a mathematically rigorous way, in [21].
When the initial datum u0 is not compactly supported on the right (or, at least, decays at 

a sufficiently slow exponential rate), the behaviour of the solution may be quite different. In 
fact, it depends on the precise behaviour of u0 at infinity. The main results are roughly the 
following: if u0/Uc∗ decays sufficiently fast as x → +∞, then u(t, x) will still have the loga-
rithmic delay (with a possibly different value if u0/Uc∗ has an algebraic decay). See [6], and 
[4] for a closely related free boundary problem. If u0/Uc∗ has a limit as x → +∞, then u(t, x) 
will converge to Uc∗ without any shift (Gallay [14]). If there is c  >  c* such that u0/Uc has a 
limit, then u(t, x) converges to Uc without any shift ([2]; when u0/Uc converges to its limit 
exponentially, the result is much older and due to Sattinger [24]). If u0 is trapped between 
two translates of Uc, a nontrivial behaviour occurs [2]. See also Berestycki–Hamel [3] for a 
general overview.

In several space dimensions, the theory has been pushed less far. The analogy with the 
one-dimensional situation is when the initial datum is compactly supported, and the first, and 
most general result, is due to Aronson–Weinberger [1]. The solution u spreads at the speed 
c∗ = 2

√
f ′(0) = 2 in the sense that

min
|x|�ct

u(t, x) → 1 as t → +∞ , for all 0 � c < c∗

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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and

sup
|x|�ct

u(t, x) → 0 as t → +∞ , for all c > c∗.

This estimate is made precise up to O(1) terms in Gärtner [13]. If N is the space dimension, 
for every λ ∈ (0, 1), the level set {u = λ} is trapped, for large times, between two spheres of 
radius

R(t) = c∗t − N + 2
c∗

lnt + Ot→+∞(1).

The Ot→+∞(1) terms are not studied. Gärtner’s contribution is probabilistic, and a PDE proof 
of his result is provided by Ducrot: in [9], he adapts the ideas of [15] to the space dimension 
N. The forthcoming contribution [23] will make the Ot→+∞(1) terms explicit.

1.2.  Question and results

Let us come back to our two-dimensional case. Let ui(t,x), i ∈ {1, 2} be the solution of the 
one-dimensional problem (5) emanating from ui(1, x) = 1 − H(x − xi). By the maximum 
principle we have u2(t, x) � u(t, x, y) � u1(t, x). And so, there exist x∞,1 � x∞,2 such that, if 
an arbitrary level set of u(t, .) is represented by the graph {x = σ(t, y)} - this is not always true, 
but certainly true if u0 is nonincreasing in x (applying the maximum principle on ux) there is a 
function σ∞(t, y) ∈ [x2,∞, x1,∞] such that

σ(t, y) = 2t − 3
2
ln t + σ∞(t, y).� (6)

The issue is: does this function σ∞ converge for large times? In one space dimension (σ∞ 
only depending on time), this is true. In order to realise that it is an issue in two space dimen-
sions, let us make a parallel with the case where f is bistable, namely: there is θ ∈ (0, 1) such 
that f (u) < 0 if u ∈ (0, θ) and f (u) > 0 on (θ, 1). Contrary to the KPP case, the travelling 
wave problem (3) and (4) has a unique orbit (c∗, Uc∗). The speed c* has the same sign as ∫ 1

0 f (u)du. If u(1, x) = 1 − H(x), then (Fife-McLeod [12]) u(t, x) converges exponentially fast 
to the wave profile; in other words there are x∞ ∈ R and ω > 0 such that

u(t, x) = Uc∗(x − c∗t + x∞) + O(e−ωt) uniformly in x ∈ R.

However, under the assumption (2), and if σ(t, y) denotes any level set of u(t, .), both authors 
proved in [22] that there is a bounded function σ∞(t, y) such that

σ(t, y) = c∗t + σ∞(t, y) + O(t−1/2),

and, depending on the initial datum u0, the function σ∞(t, y) may or not converge as time goes 
to infinity. See also Matano–Nara–Taniguchi [18] for similar results, with a balanced bistable 
nonlinearity corresponding to c*  =  0. It is therefore legitimate to suspect a phenomenon of 
that kind here, and this is exactly what happens.

Let us now state and explain our results. We point out that the very same would hold in 
space dimension N  >  2, provided that u0 is trapped by two translates (in the same direction) of 
1  −  H. This does not include situations that are more specific to space dimensions larger than 
2, for instance if the level sets of u0 are trapped between two cylinders. This will be treated 
elsewhere.

Our first result says that the large time dynamics of (1) is, in some sense, that of the heat 
equation.

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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Theorem 1.2.  Let u0 satisfy assumption (2). For every small ε > 0, there is Tε > 0 and 
a function aε

0, with ‖aε
0‖∞ and ‖daε

0/dy‖∞ bounded in ε, such that the solution u of (1)  
emanating from u0 satisfies

u(t, x, y) = Uc∗

(
x − 2t +

3
2

lnt − ln(aε(t, y) + O(ε))

)
+O(t−1/2), for t � Tε,

where the function aε(t, y) solves the heat equation

(∂t − ∂yy)aε = 0 , t > 1 , y ∈ R , aε(1, y) = aε0(y).

This explains that (1) has, beyond the logarithmic shift, a large time dynamics which mim-
ics that of the heat equation. We point out that this result is optimal, since the solution of the 
heat equation does not, in general, converge to anything: see for instance Collet–Eckmann [8], 
Vàzquez–Zuazua [27]. We will, by the way, use those results to construct solutions that do not 
converge beyond the shift.

Theorem 1.2 is the most general one can prove. However, it does not really say whether 
the solution will, or not, converge to something, for the simple reason that it does not exclude 
a sequence (aε0)ε such that the heat equation starting from aε

0 will diverge for ε = O(1), and 
converge to something as ε becomes very small. So, in the following result, we are going to 
show that both types of behaviour may happen: convergence to a single wave, or, on the con-
trary, nonconvergence. Let us not forget, though, that the asymptotic dynamics is that of the 
heat equation. So, nonconvergence will occur through infinitely slow oscillations between two 
waves. Assume, for definiteness, that u0 is nonincreasing in x. This is by no means necessary 
but, since we are not aiming for utmost generality, this slight loss of generality will be com-
pensated by a lighter formulation. Let σ∞(t, y) be given by (6).

Theorem 1.3.  The following situations hold.

	 1.	There are initial data u0(x,y), satisfying assumptions (2), such that t �→ σ∞(t, 0) does not 
converge as t → +∞.

	 2.	Assume the existence of two functions u±
0 (x), and x1 � x2, such that

1 − H(x − x1) � u+0 (x), u−0 (x) � 1 − H(x − x2),

		 and such that

lim
y→±∞

u0(x, y) = u±
0 (x), uniformly in x ∈ R.

		 If u±(t, x) is the solution of (5) emanating from u±
0 (t, x), define σ±

∞ as:

u±(t, x) = Uc∗

(
x − 2t +

3
2

lnt + σ±
∞

)
+ot→+∞(1).

		 Then we have

lim
t→+∞

σ∞(t, y) = −ln
(

e−σ+
∞ + e−σ−

∞

2

)
,

		 uniformly on every compact set in y. If σ+
∞ = σ−

∞, the convergence is uniform in y.
	 3.	Assume the existence of u∞(x, y), periodic in y, such that

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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lim
y→+∞

(
u0(x, y)− u∞(x, y)

)
= 0, uniformly in x.

		 Then σ∞(t, y) converges to a constant as t → +∞, uniformly in y.

We could of course imagine more situations, such as, for instance, the existence of two 
periodic functions u±

∞(x, y) such that u0(x,y) resembles u+
∞(x, y) (resp. u−

∞(x, y)) as y → +∞ 
(resp. y → −∞)... Another interesting question is a possible asymptotic expansion of σ∞(t, y).

2.  Strategy, discussion, organisation of the paper

2.1.  Main ideas of the proof

There is a sequence of transformations that bring the equations under the (1) to a form that 
will be amenable to treatment.

	 1.	We observe the equation (1) in the reference frame whose origin is X(t) = 2t − 3
2 ln t  

and choose the change of variables x′ = x − X(t) and u(t,x,y)  =  u1(t,x  −  X(t),y). After 
dropping the primes and indexes, equation (1) becomes

∂tu = ∆u +

(
2 − 3

2t

)
∂xu + u − u2 , t > 1 , (x, y) ∈ R2� (7)

		 with initial datum u(1,x,y)  =  u0(x  +  2,y).
	 2.	To follow the exponential decay of the wave Uc∗, it will be useful to take it out and set 

u(t, x, y) = e−xv(t, x, y); (7) thus becomes

∂tv = ∆v − 3
2t

(∂xv − v)− e−xv2 , t > 1 , (x, y) ∈ R2� (8)

		 with initial datum v(1, x, y) = exu0(x + 2, y).
	 3.	Finally, if we want to study (8) in the diffusive zone, i.e. the region x ∼

√
t , we introduce 

self similar variables ξ = x√
t, τ = ln t. The variable y is unchanged:

w(τ , ξ, y) = w
(
ln t,

x√
t
, y
)

=
1√

t
v(t, x, y).� (9)

		 Then (8) becomes

∂τw = Lw + eτ∂yyw − 3
2

e−
τ
2 ∂ξw − e

3
2 τ−ξe

τ
2 w2 , τ > 0 , (ξ, y) ∈ R2

�
(10)

		 where

Lw = ∂ξξw +
ξ

2
∂ξw + w

		 with initial datum w(0, ξ, y) = eξu0(ξ + 2, y).

In the sequel, we will use the form that will be best suited to our purposes. Let us say a word 
about the strategy of the proof of theorem 1.2. In one space dimension, (10) becomes

∂τw = Lw − 3
2

e−
τ
2 ∂ξw − e

3
2 τ−ξe

τ
2 w2 , τ > 0 , ξ ∈ R.

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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The main step of the proof in [20] was to prove the existence of a constant α∞ > 0 such that

w(τ , ξ) −→τ→+∞ α∞ξ+e−ξ2/4, in {ξ � e−( 1
2 −δ)τ},

where δ > 0 is arbitrarily small. We would then define the translation σ∞(t) such that

Uc∗(x + σ∞(t))
∣∣∣∣
x=tδ

= e−xv(t, x)
∣∣∣∣
x=tδ

.

That is,

σ∞(t) = −lnα∞ + O(t−δ).� (11)

We would then prove the uniform convergence to Uc∗(x − lnα∞) by examining the difference

ṽ(t, x) =
∣∣v(t, x)− Uc∗(x + σ∞(t))

∣∣
in the region {x < tδ}. It turned out that ṽ(t, x) was a subsolution of (a perturbation of) the 
heat equation

Vt = Vxx + O(t1−δ) , t > 0 , −tδ < x < tδ

V(t,−tδ) = e−tδ , t > 0
V(t, tδ) = 0 , t > 0.

� (12)

The condition at x = −tδ simply comes from the fact that v(t, x) decays, by definition, like 
ex at −∞. Although the domain looks very large, its first Dirichlet eigenvalue is of the order 
t−2δ, hence a much larger quantity than the right hand side of (12). Thus V(t, x) goes to zero 
uniformly in x as t → +∞, which implies the sought for convergence result.

In what follows, we are going to adapt these ideas to our setting. The main additional dif-
ficulty is the transverse diffusion, which, in a very paradoxical way, does not help us. This is 
not a rhetorical argument: its presence is really what prevents convergence, in most cases. This 
implies that we will have to be quite careful with the estimates.

2.2.  Comparison with the bistable case

Theorems 1.2 and 1.3 have similarities with those pertaining to the bistable state, that we 
proved in [22]. Both KPP and bistable dynamics show features of similar kinds: a one- 
dimensional dynamics at the leading order, followed by perturbations driven by diffusion at 
the lower order. This shows a certain universality of the phenomenon. However they are not 
at all proved in the same way, because the leading order dynamics is given by two very differ-
ent phenomena. In the bistable case, the travelling wave Uc∗ is at the heart of the study, in the 
sense that it dictates the whole asymptotic behaviour. In order to take this fact into account, 
we have devised an infinite Lyapunov–Schmidt reduction, and the heat equation arises as a 
bifurcation equation. In the Fisher-KPP case, the dynamics is driven by the tail of the solution. 
More precisely, the diffusive area x ∼

√
t  is crucial, and the heat equation arises directly from 

this area. The travelling wave behaviour in the region x = O(1) is just a consequence of this 
diffusive dynamics. As a consequence, our results, although they do resemble those proved in 
[22], are quite different both in nature and in the methods that are used to prove them.

2.3.  Organisation of the paper

The paper is organised as follows. In section 3, we explain how the behaviour of u(t, x, y) in 
the half plane {x < tδ , y ∈ R} is slaved to that on the line {x = tδ , y ∈ R}. In section 4, we 

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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characterise the asymptotic behaviour of a general linear equation that encompasses, in par
ticular, equation (10). In section 5, we define sub and super solutions that will enable us to 
prove theorem 1.2. Finally, theorem 1.3 is proved in section 6.

3.  Control of the solution by its value at tδ

The goal of this section is to prove, as announced in the introduction, that controlling the solu-
tion slightly to the right of the O(1) in x area implies, provided that the control is well-tailored, 
the control of the solution to the entire region to the left. From now on we consider δ ∈ (0, 1

2 ), 
that will be as small as we wish.

3.1. The basic result

Let a(t, y) be a smooth function such that

	 –	there are constants 0 < a0 � a0 < +∞ that bound a:

∀t > 1 , ∀y ∈ R , a0 � a(t, y) � a0,� (13)

	 –	there is a constant C0  >  0 depending on a0 and a0 that bounds the derivatives of a:

∀t > 1 , ∀y ∈ R , |∂ya(t, y)| � C0√
t
, max(|∂yya(t, y)|, |∂ta(t, y)|) � C0

t
.

� (14)
We define γ(t, y) by the relation

Uc∗(t
δ + γ(t, y)) = tδe−tδ−1/4t1−2δ a(t, y)√

2
√
π

:= ua
+(t, y).� (15)

We have therefore, for large t and δ ∈ (0, 1
3 ):

γ(t, y) = − ln

(
a(t, y)√

2
√
π

)
+ O(t−δ).

More important we have, from the implicit functions theorem, that γ is at least C1 in t and C2 
in y, and we have, for a universal constant C:

|∂yγ(t, y)| � C|∂ya(t, y)|

|∂yyγ(t, y)| � C
(
|∂yya(t, y)|+ (∂ya(t, y))2

)

|∂tγ(t, y)| � C
(
|∂ta(t, y)|+ a(t,y)

t1−δ

)
.

�

(16)

Let ua(t, x, y) be a solution of

∂tua = ∆ua +

(
2 − 3

2t

)
∂xua + ua − u2

a t > 1 , x � tδ , y ∈ R

ua(t, tδ , y) = ua
+(t, y) t � 1 , x = tδ , y ∈ R

inf
y∈R

lim inf
x→−∞

ua(1, x, y) > 0.

�

(17)

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284
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Here is the main result of this section.

Theorem 3.1.  For δ ∈ (0, 1
4 ) and ua solution to equation (17) where ua

+ is defined in (15) 
and a satisfies assumptions (13) and (14), we have for any t  >  1

sup
|x|�tδ

sup
y∈R

ex
∣∣∣∣ua(t, x, y)− Uc∗(x + γ(t, y))

∣∣∣∣�
C
tλ

,

for some universal constant C  >  0 and λ ∈ (0, 1 − 4δ).

Proof.  We simply set

s(t, x, y) = ex(ua(t, x, y)− Uc∗(x + γ(t, y))
)
.

Then, for any t  >  1, x < tδ, and y ∈ R

∂ts −∆s +
3
2t
(∂xs − s) + s(ua + Uc∗(x + γ)) = ex ((∂yyγ − ∂tγ)U′ + (∂yγ)

2U′′)

so that by (16), we have

∂ts −∆s +
3
2t
(∂xs − s) + s(ua + Uc∗(x + γ)) = O

(
1

t1−2δ

)
t > 1 , x < tδ , y ∈ R

s(t, tδ , y) = 0 t > 1 , x = tδ , y ∈ R

sup
y∈R

s(t,−tδ , y) = O
(

e−tδ
)

t > 1 , x = −tδ , y ∈ R.

� (18)

The last equation comes from the definition of s, as the product of a bounded function by an 
exponential. As in [20], a super-solution to (18) is devised as

s(t, x, y) =
A
tλ

cos
( x

tδ+ε̃

)
,

where δ ∈ (0, 1
4 ), λ ∈ (0, 1 − 4δ), ε̃ > 0 is small enough such that 2δ + 2ε̃+ 1 − λ < 1 − 2δ 

and A  >  0 large enough. The idea is that the first Dirichlet eigenvalue of (−∂xx) in the interval 
(−tδ , tδ) is of order t−2δ (a nonintegrable power of t if δ is small enough), whereas the right 
hand side of (18) is of the order t2δ−1, a much larger power. And so, s will dominate s, which 
proves the result.� ■ 

3.2.  Perturbative results

Consider ε > 0 and b(t, y) a smooth function such that for any t  >  1 and y ∈ R:

|b(t, y)| � ε+
C
tδ

,� (19)

for some constant C  >  0. Note that no assumption is made on the derivatives of b and, in par
ticular, no assumption on a possible time decay of ∂tb or ∂yb. Set, this time
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ua+b
+ (t, y) = tδe−tδ−1/4t1−2δ a(t, y) + b(t, y)√

2
√
π

.� (20)

Theorem 3.1 perturbs into the following

Proposition 3.2.  For δ ∈ (0, 1
5 ), let ua (resp. ua+b) be a solution of the Dirichlet problem 

(17), with boundary condition ua
+(t, y) (resp. ua+b

+ ). There exists C  >  0, depending on ua(1,.) 
and ua+b(1,.) such that for any t  >  1

sup
|x|�tδ

sup
y∈R

ex|ua+b(t, x, y)− ua(t, x, y)| � C(ε+
1
tδ
).

Proof.  Define u(t, x, y) (resp. u(t, x, y)) as the solutions of (17) with the following data:




u(t, tδ , y) = ua+b
+ − C(ε+ t−δ), u(1, x, y) = min

(
ua(1, x, y), ua+b(1, x, y)

)

u(t, tδ , y) = ua+b
+ + C(ε+ t−δ), u(1, x, y) = max

(
ua(1, x, y), ua+b(1, x, y)

)
.

Both u  and u  fall in the assumptions of theorem 3.1, thus u  approaches Uc∗(x + γ(t, y)) (resp. 
u  approaches Uc∗(x + γ(t, y)) like t−λ as t → +∞ with λ ∈ (0, 1 − 4δ). The definition of γ  
and γ  mimick that of γ in the preceding section; in other words the translation of Uc∗ is ad-
justed to coincide with the solution at the boundary. Thus we have

|γ(t, y)− γ(t, y)| � C(ε+ t−δ),

and the proposition follows since 1 − 4δ > δ.� ■ 

4.  A Dirichlet problem in the diffusive zone

Consider the following linear equation for ε > 0 small, and λ > 0:

∂τv = Lv +
eτ

ε2 ∂yyv + ε2λe−λτ (φε(τ)v + ψε(τ)∂ξv + fε(τ , ξ)) , τ > 0 , ξ > 0 , y ∈ R

v(τ , 0, y) = 0 , τ > 0 , ξ = 0 , y ∈ R
v(0, ξ, y) = v0(ξ, y) , τ = 0 , ξ > 0 , y ∈ R.

� (21)
In the sequel of the paper, we will need to use various versions of this equation, and this is why 
we have chosen to study it in its most general form. The factor ε > 0 stands for the fact that, quite 
often, we start the study of the equation at an already large time, typically τε = −lnε. The real 
number λ is an exponent that is in general less than 1/2. In practice, it will stand for the decay of 
quantities that will be known to decay exponentially fast, but less than the critical exponent 1/2. 
The term fε is a forcing that will, in general, arise from inhomogeneous Dirichlet conditions.

4.1.  Behaviour for general initial data

With no particular assumption on the behaviour of v0 in the direction y apart from being 
bounded, we are going to prove the approximate stabilisation of the solutions of (21) to eigen-
functions of the heat operator, up to errors of the order ε. Let X be the space
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X = {v(ξ, y) ∈ L2(R+, L∞(R)), eξ
2/8v ∈ L2(R+, L∞(R))}.� (22)

The result is the following.

Theorem 4.1.  Choose λ > 0 and C0  >  0, as well as v0 ∈ X . Let (φε(τ),ψε(τ), fε(τ , ξ))0�ε�1 
be a family of functions that are compactly supported in ξ, bounded by C0 in τ, ξ and ε. 
There exist ε0 > 0 and C  >  0 depending only on λ and C0 such that for any compact set 
K ⊂ R+, there is CK  >  0, and a a unique solution v ∈ C(R+, X) to (21) emanating from v0, which  
satisfies

∀τ > 0 , ξ > 0 , y ∈ R , v(τ , ξ, y) = ξ

(
e−ξ2/4
√

2
√
π
(αc(τ , y) + β(τ , y)) + e−

λ
2 τ ṽ(τ , ξ, y)

)
.

Moreover, for any τ > 0, y ∈ R we have:

∂ταc =
eτ

ε2 ∂yyαc , αc(0, y) =
1√
2
√
π

∫ +∞

0
ξv0(ξ, y)dξ

‖β(τ)‖L∞(R) � Cε2λ ‖∂τβ(τ)‖L∞ � Cε2λ

‖∂yβ(τ)‖L∞(R) � Cε2λ+1e−
τ
2 ‖∂yyβ(τ)‖L∞ � Cε2λ+2e−τ ,

and for any τ > 0, ξ ∈ K , y ∈ R

max(|ṽ(τ , ξ, y)|, |∂τ ṽ| , |∂ξ ṽ| , |∂ξξ ṽ|) � CKε
λ

|∂yṽ| � CKε
λ+1e−

τ
2 , |∂yyṽ| � CKε

λ+2e−τ .

Proof of theorem 4.1.  Let λ > 0 be given by equation (21) and C0  >  0. Set ε > 0 and 
consider φε, ψε and fε uniformly bounded in τ and ε by C0. Assume also fε is compactly 
supported in ξ. Let v be the solution to (21) emanating from v0 ∈ X . Let us introduce the new 

function w(τ , ξ, y) = e
ξ2

8 v(τ , ξ, y). This new function solves for any τ > 0, ξ > 0 and y ∈ R.

∂τw = Mw +
eτ

ε2 ∂yyw + ε2λ e−λτ

(
(φε(τ)−

ξ

4
ψε(τ))w + ψε(τ)∂ξw + e

ξ2

8 fε(τ , ξ)
)

w(τ , 0, y) = 0 τ > 0 , ξ = 0 , y ∈ R

w(0, ξ, y) = w0(ξ, y) = e
ξ2

8 v0(ξ, y) τ = 0 , ξ > 0 , y ∈ R
�

(23)

where Mw = ∂ξξw +
(

3
4 − ξ2

16

)
w. Thus D(M) = {w ∈ H2

0(R+) | ξ2w ∈ L2(R+)}, M is 

symmetric and its null space is generated by the unit eigenfunction e0(ξ) =
1√
2
√
π
ξe−

ξ2

8 . This 

linear operator defines a quadratic form on {w ∈ H1
0(R+) | ξ2w ∈ L2(R+)} as

q(w) =< −Mw, w >L2(R+)=

∫ +∞

0
(∂ξw)2 +

(
ξ2

16
− 3

4

)
w2 dξ

which is nonnegative and satisfies

�
q(w) � ‖w‖2

L2(R+) if < w, e0 >L2(R+)= 0.
■ 
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Lemma 4.2.  There exist ε0 > 0 (depending on λ and C0) and C  >  0 such that for any 
ε ∈ (0, ε0), any w solution to (23) emanating from w0 ∈ L2(R+, L∞(R)) satisfies

∀τ � 0 , ‖w(τ)‖L2(R+,L∞(R)) � C(‖w0‖L2(R+,L∞(R)) + ελ).

Proof of lemma 4.2.  Taking the L2(R+) scalar product of (23) with w leads to

∂τ‖w‖2
L2(R+) + 2q(w) =

eτ

ε2

(
∂yy‖w‖2

L2(R+) − 2‖∂yw‖2
L2(R+)

)

+ 2ε2λe−λτ

(
φε(τ)‖w‖2

L2(R+) − ψε(τ)

∫ +∞

0

ξ

4
w2dξ +

∫ ∞

0
e

ξ2

8 fε(τ , ξ)w dξ
)

.

Note that
∫ +∞

0

ξ

4
w2dξ �

∫ +∞

0

(
ξ2

16
+

1
4

)
w2dξ � q(w) + ‖w‖2

L2(R+)

whence, using Cauchy–Schwarz inequality,

∂τ‖w‖2
L2(R+) + 2

(
1 − ε2λe−λτ |ψε|

)
q(w) �

eτ

ε2 ∂yy‖w‖2
L2(R+)

+ 2ε2λe−λτ

(
(|φε|+ |ψε|+

1
2
)‖w‖2

L2(R+) +
1
2
‖e

ξ2

8 fε‖2
L2

)
.

If ε0 > 0 is small enough (depending on λ and C0), 1 − ε2λe−λτ |ψε(τ)| > 0 for any τ � 0 
and ε ∈ (0, ε0), which combined with q(w) � 0 gives

∂τ‖w‖2
L2(R+) �

eτ

ε2 ∂yy‖w‖2
L2(R+) + ε2λe−λτ (C1‖w‖2

L2(R+) + C2)� (24)

where C1 only depends on sup{|φε(τ)|, |ψε(τ)| , τ � 0 , ε > 0} while C2 depends on fε. Let 
h(τ) be the solution to the ODE

∀τ � 0 , h′(τ) = ε2λe−λτ (C1h(τ) + C2) , h(0) = ‖w0‖2
L2(L∞)

then h is a supersolution to (24) and for any τ � 0,

h(τ) = h(0)e
C1
λ ε2λ(1−e−λτ ) +

C2

C1

(
e

C1
λ ε2λ(1−e−λτ ) − 1

)
.� (25)

If ε0 is small enough (compared to λ/C1), we can bound the second term as follows:

‖w(τ)‖2
L2(L∞) � C

(
‖w0‖2

L2(L∞) +
C2

λ
ε2λ

)
.

This concludes the proof of lemma 4.2.� ■ 

Proof of theorem 4.1 (continued).  We use the spectral property of M to decompose 
any solution w to (23) as

∀(τ , ξ, y) ∈ R+ × R+ × R , w(τ , ξ, y) = α(τ , y)e0(ξ) + r(τ , ξ, y),

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284



3296

where α(τ , y) =< w(τ , ·, y), e0 >L2(R+) so that r is a transverse perturbation: for any 
(τ , y) ∈ R+ × R, < r(τ , ·, y), e0 >L2(R+)= 0. Projecting equation  (23) on the null space of 
M gives

∂τα =
eτ

ε2 ∂yyα+ ε2λe−λτ

(
(φε −

ψε√
π
)α− ψε < r, e′0 +

ξ

4
e0 >L2(R+) + < e

ξ2

8 fε, e0 >L2(R+)

)
,

while the equation satisfied by r reads

∂τ r = Mr +
eτ

ε2 ∂yyr + ε2λe−λτ

(
φεr + ψεQ(∂ξr − ξ

4
r) + αψε Q(e′0 −

ξ

4
e0) + Q(e

ξ2

8 fε)
)

,

� (26)

where P  =  1  −  Q is the projection onto the null space of M.
Since we have in mind that we will find a dynamics similar to that of the heat equation, we 

introduce αc solution to

∂ταc =
eτ

ε2 ∂yyαc , αc(0, y) = α(0, y)

and set β = α− αc the difference. Then, we have β(0, y) = 0 and

∂τβ =
eτ

ε2 ∂yyβ + ε2λe−λτ

(
(φε −

ψε√
π
)(αc + β)− ψε < r, e′0 +

ξ

4
e0 > + < e

ξ2

8 fε, e0 >

)
.

� (27)

We shall prove that β remains small for all time and that r decays exponentially fast to zero as 
time goes to infinity. Indeed, by the maximum principle and lemma 4.2, we get

∂τβ �
eτ

ε2 ∂yyβ + ε2λe−λτ

(
|φε|+

ψε√
π

)
|β|

+ ε2λe−λτ

((
|φε|+

ψε√
π

)
‖αc(0)‖L∞ + |ψε|‖e′0 +

ξ

4
e0‖L2‖r(τ)‖L2(L∞) + ‖e

ξ2

8 fε‖L2

)
.

Define h as a solution to the ODE

h′(τ) = ε2λe−λτ (C1|h(τ)|+ C2) , h(0) = 0,

where C1 only depends on φε and ψε while C2 depends on φε, ψe, fε and ‖w‖L2(L∞). Then, h is 
a supersolution to (27) and dealing as in (25), we get for ε0 small enough (compared to λ/C1),

∀τ � 0 , ‖β(τ)‖L∞(R) � |h(τ)| � e
C2

λ
ε2λ.� (28)

We shall now apply parabolic regularity to get the same bounds on the derivatives of β. For 
any y0 ∈ R, set ζ = ε e−

τ
2 (y + y0) and denote B(τ , ζ) = B(τ , εe−

τ
2 (y + y0)) = β(τ , y). 

Then, by (27),

∂τB = ∂ζζB +
ζ

2
∂ζB + ε2λe−λτ

(
(φε −

ψε√
π
)(αc + B)− ψε〈r, e′0 +

ξ

4
e0 > + < e

ξ2

8 fε, e0〉
)

.
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The above bound on β also gives B uniformly bounded by ε2λ. By parabolic regularity applied 
in the range |ζ| < 1, we get that the derivatives of B are uniformly bounded by ε2λ. Coming 
back to β, we get the desired estimates since the bounds do not depend on y0.

As far as r is concerned, we compute an energy estimate to benefit from the spectral gap in 
self similar variables. Taking the L2 scalar product of (26) with r gives

∂τ‖r‖2
L2(R+) + 2q(r) =

eτ

ε2

(
∂yy‖r‖2

L2(R+) − 2‖∂yr‖2
L2(R+)

)
+ 2ε2λe−λτφε‖r‖2

L2(R+)

+ 2ε2λe−λτ

(
ψε〈Q(∂ξr − ξ

4
r) + αQ(e′0 −

ξ

4
e0), r〉L2(R+) + 〈Q(e

ξ2

8 fε), r〉
)

.

�

(29)

Since
∣∣∣∣〈Q(∂ξr − ξ

4
r), r〉L2(R+)

∣∣∣∣ =
∫ ∞

0

ξ

4
r2dξ �

∫ ∞

0

(
ξ2

16
+

1
4

)
r2dξ � q(r) + ‖r‖2

L2(R+)

and
∣∣∣∣α〈Q(e′0 −

ξ

4
e0), r〉L2(R+)

∣∣∣∣ � ‖α(τ)‖L∞‖e′0 −
ξ

4
e0‖L2‖r‖L2 � (‖αc‖L∞ + ‖β‖L∞) ‖r‖L2 ,

we get

∂τ‖r‖2
L2(R+) + 2(1 − ε2λe−λτ |ψε|)q(r) �

eτ

ε2 ∂yy‖r‖2
L2(R+) + 2ε2λe−λτ (|φε|+ |ψε|)‖r‖2

L2

+ 2ε2λe−λτ

(
|ψε|(‖αc‖L∞ + ‖β‖L∞)‖r‖L2 + ‖e

ξ2

8 fε‖L2‖r‖L2

)
.

If ε0 is small enough (depending on λ and C0), then we have 1 − ε2λe−λτ |ψε| � 3
4  for any 

τ � 0 and ε ∈ (0, ε0). Combined with q(r) � ‖r‖2
L2, (28) and lemma 4.2, this gives

∂τ‖r‖2
L2(R+) +

3
2
‖r‖2

L2 �
eτ

ε2 ∂yy‖r‖2
L2(R+) + Cε2λe−λτ .

Define h as the solution to the ODE

h′(τ) +
3
2

h(τ) = Cε2λe−λτ , h(0) = ‖r0‖2
L2(L∞).

Then, h is a supersolution to (29) and

∀τ � 0 , ‖r(τ)‖2
L2(L∞) � h(τ) � Cε2λe−λτ + e−

3
2 τ‖r0‖2

L2(L∞).� (30)

We shall now apply again parabolic regularity to get some bounds on r. For any y0 ∈ R, set 
ζ = ε e−

τ
2 (y + y0) and denote R(τ , ξ, ζ) = R(τ , ξ, εe−

τ
2 (y + y0)) = r(τ , ξ, y). Then, by (26),

∂τR = MR + ∂ζζR +
ζ

2
∂ζR + ε2λe−λτ

(
φεR + ψεQ(∂ξR − ξ

4
R) + αψεQ(e′0 −

ξ

4
e0) + Q(e

ξ2

8 fε)
)

.
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Moreover, by (30), ‖R‖2
L2(L∞) � Cε2λe−λτ and the parabolic regularity states that for any 

compact K of R+, there exists CK  >  0 independent of y0 such that for any τ > 0, ξ ∈ K  and 
|ζ| < 1,

max (|∂τR| , |∂ξR| , |∂ξξR| , |∂ζR| , |∂ζζR|) � CKε
λe−

λ
2 τ .

Coming back to r, we get

max (|∂τ r| , |∂ξr| , |∂ξξr|) � CKε
λe−

λ
2 τ ,

while

|∂yr| � CKε
λ+1e−

λ+1
2 τ , |∂yyr| � CKε

λ+2e−
λ+2

2 τ .

This implies the lemma with ṽ(τ , ξ, y) = r(τ ,ξ,y)
ξ e−

ξ2

8 e
λ
2 τ.� ■ 

4.2.  When the initial datum goes to zero as |y | goes to infinity

The result that we are going to prove is much simpler than theorem 4.1. We could use this last 
result, but we prefer to give a direct approach.

Proposition 4.3.  Let v be a solution of (21), with initial datum v0 satisfying

	 1.	supy∈R ‖eξ
2/8v0(ξ, y)‖L2(R+) < +∞,

	 2.	limy→±∞ v0(ξ, y) = 0, uniformly in ξ ∈ R+.

Then we have v(τ , ξ, y) = ξṽ(τ , ξ, y) with

lim
τ→+∞

‖ṽ(τ , .)‖L∞(R+×R) = 0.

Proof.  Let us first make the following simplifying assumption: there is A  >  0 such that

v0(ξ, y) = 0 if |y| � A.� (31)

This allows us to pass to self-similar variables in y: ζ = ε y√
t
. And so, (21) becomes

∂τv = (L+N )v + ε2λe−λτ (φε(τ)v + ψε(τ)∂ξv + fε(τ , ξ)) , τ > 0 , ξ > 0 , ζ ∈ R
v(τ , 0, y) = 0 , τ > 0 , ξ = 0 , ζ ∈ R,

� (32)

with N = ∂ζζ +
1
2ζ∂ζ. The spectrum of N , in the space L2(R, eζ

2/8dζ), is { k
2 , k ∈ N∗}. And 

so, writing v(τ , ξ, ζ) = e−(ξ2+ζ2)/8w(τ , ξ, ζ) we obtain the following equation for w:

∂τw = (M+ P)w + ε2λe−λτ

(
(φε(τ)−

ξ

4
ψε(τ))w + ψε(τ)∂ξw + e

ξ2+ζ2

8 fε(τ , ξ)
)

w(τ , 0, y) = 0 τ > 0 , y ∈ R,
�

(33)

where Pw = ∂ζζw +
(

1
4 − ξ2

16

)
w. We have, for all w(τ , ξ, ·) ∈ L2(R):
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∫

R
(Pw)w dζ �

1
2
‖w‖2

L2(R).

Arguing as in the proof of theorem 4.1, we obtain

‖w(τ , .)‖L2(R+×R) � e−τ/2‖w(0, .)‖L2(R+×R).� (34)

This proves the convergence to 0 of v. In order to suppress assumption (31), let us notice 
that, for all δ > 0, the function (v0(ξ, y)− δ)+ satisfies (31). Moreover, due to the convexity 
of v �→ (v − δ)+, the function (v(τ , ξ, ζ)− δ)+ is a sub-solution of (33). And so, we have 
v(τ , ξ, ζ) � vδ(τ , ξ, ζ) where v(τ , ξ, ζ) solves (33) with initial datum (v0(ξ, y)− δ)+. So vδ 
satisfies (34), which entails, by elliptic regularity, its convergence to 0 on every compact sub-
set of R+ × R . Because the zero-order coefficients of the equation (32) are positive at infinity, 
the convergence holds in fact in L∞(R+ × R). By elliptic regularity, this is also true for ∂ξv. 
The mean value theorem implies the result.� ■ 

5.  General large time asymptotics for the full KPP equation, proof of theorem 
1.2

Let u0 ∈ C(R2) satisfy assumption (2), i.e. trapped between two translates of 1  −  H. Denote u 
the unique classical solution to (1) emanating from u0 at time t  =  1.

As announced in the introduction, we shall construct two functions ū(t, x, y) and u(t, x, y), 
defined for t  >  1, {x � tδ} (with δ small to be chosen later) and y ∈ R, by the following pro-
cedure. We will solve equation (1) inside this region, and we will impose, as a Dirichlet condi-
tion at {x = tδ}, the value of a well chosen approximate solution of (1) in the diffusive zone. 
We will see, in the next sections, that the functions ū(t, x, y) and u(t, x, y) actually mimic the 
behaviour of the true solution u(t, x, y).

It will, however, be convenient to work in the self-similar coordinates. Let w(τ , ξ, η) be defined 
as in section 2. Recall that w satisfies (10) with initial condition w(0, ξ, η) = eξu0(ξ + 2, y).

We will need the following frame, borrowed from [20]. Under the assumption (2), there are 
functions η±(τ) and q±(τ), and constants 0 < η0 < η1, depending only on x1 and x2, satisfying

η0 � η−(τ) � η+(τ) � η1, q±(τ) = O(e−
τ
4 ),

and such that for any τ > 0, ξ > ξδ,

η−(τ)ξe−
ξ2

4 − q−(τ)ξe−
ξ2

7 � w(τ , ξ, y) � η+(τ)ξe−
ξ2

4 + q+(τ)ξe−
ξ2

7 e−eδτ .
�

(35)

To see it, it suffices to apply the paragraphs ‘an upper barrier’ in [20] to the solution of the 
1D KPP equation emanating from 1  −  H(x  −  x1) and ‘a lower barrier’ to that emanating from 
1  −  H(x  −  x2) and apply the comparison principle.

In the sequel, for every small ε > 0, we will set

Tε = ε−2 and τε = lnTε (notice that ε = e−
τε
2 ).� (36)

In the next two sections, we will seek to apply theorem 4.1 with the initial datum

w(τε, ξ, y) = eξe
Tε
2 u(Tε, ξ + 2, y).� (37)

Due to (35), we will be able to control this initial condition.
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5.1.  Diffusive supersolution

For any δ ∈ (0, 1
2 ), define ξδ = e−( 1

2 −δ)τ which corresponds to x = tδ in self similar coordi-
nates. Let w̄ the solution to

∂τ w̄ = Lw̄ + eτ∂yyw̄ − 3
2

e−
τ
2 ∂ξw̄ τ � τε , ξ > −ξδ , y ∈ R

w̄(τ , ξδ , y) = e−eδτ τ � τε , ξ = −ξδ , y ∈ R
w̄(τε, ξ, y) = w(τε, ξ, y) τ = τε , ξ > −ξδ , y ∈ R.

�

(38)

Then, w̄ is a supersolution to (10) for ξ > −ξδ. Indeed, by definition (7)

w(τ , ξ, y) = e−
τ
2 +ξe

τ
2 u1(eτ , ξe

τ
2 , y),

the function u1 being strictly uniformly bounded by 0 and 1. It follows that

∀τ � 0 , ∀y ∈ R , 0 < w(τ ,−ξδ , y) < e−eδτ .

We have ∂τw(τ ,−ξδ , y) =
(
∂tu1e

τ
2 − 1

2 (u1 + ∂xu1)e−( 1
2 −δ)τ − 1

2 u1e−
τ
2

)
e−eδτ  gives for 

δ > 0 small enough

∀τ � 0 , ∀y ∈ R , |∂τw(τ ,−ξδ , y)| � Ce−δeδτ .

To simplify the moving Dirichlet boundary ξ = ξδ = e−( 1
2 −δ)τ , we introduce a change of 

variables:

w̄(τ , ξ, y) = p̄(τ − τε, ξ + ξδ , y) + e−eδτχ(ξ + ξδ)

where τε is defined in (36) and χ is a smooth monotonic function such that χ(η) = 1 for 
η ∈ [0, 1) and χ(η) = 0 for η > 2. The function p̄(τ ′, η, y) then satisfies (removing the 
primes) for any τ > 0, η > 0 and y ∈ R,

∂τ p̄ = Lp̄ +
eτ

ε2 ∂yyp̄ + ε1−2δe−( 1
2 −δ)τ

(
−
(
δ +

3
2
ε2δe−δτ

)
∂η p̄ + Ξε(τ , η)

)

p̄(τ , 0, y) = 0 τ > 0 , η = 0 , y ∈ R

p̄(0, η, y) = w(τε, η − ε1−2δ , y)− e−1/ε2δ
χ(η) τ = 0 , η > 0 , y ∈ R

�

(39)

where Ξε is a smooth function supported in η ∈ [0, 2] and uniformly bounded:

∃Cδ > 0 | ∀ε > 0 , ∀τ � 0 , ∀η � 0 , |Ξε(τ , η)| � Cδ .

Choose λ = 1
2 − δ > 0, φε = 0, ψε(τ) = −(δ + 3

2ε
2δe−δτ ) uniformly bounded in τ and ε 

and fε = Ξε compactly supported in η and uniformly bounded in τ and ε. Then, applying 
theorem 4.1, we have for τ > τε, ξ > −ξδ, y ∈ R,

w̄(τ , ξ, y) = (ξ + ξδ)


e−

(ξ+ξδ)2

4√
2
√
π

(
ᾱc(τ − τε, y) + β̄(τ − τε, y)

)
+ e−

λ
2 (τ−τε)p̃(τ − τε, ξ + ξδ , y)




where for any τ > 0 and y ∈ R

∂τ ᾱc =
eτ

ε2 ∂yyᾱc , ᾱc(0, y) =
1√
2
√
π

∫ +∞

0
η
(

w(τε, η − ε1−2δ , y)− e−1/ε2δ
χ(η)

)
dη
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and for any τ > 0

‖β̄(τ)‖L∞(R) � Cε1−2δ , ‖∂τ β̄(τ)‖L∞(R) � Cε1−2δ

‖∂yβ̄(τ)‖L∞ � Cε2−2δe−
τ
2 , ‖∂yyβ̄(τ)‖L∞ � Cε3−2δe−τ

and for any τ > 0, ξ ∈ K  compact set of R+, y ∈ R

max (|p̃(τ , ξ, y)|, |∂τ p̃| , |∂ξp̃| , |∂ξξp̃|) � CKε
1
2 −δ

|∂yp̃| � CKε
3
2 −δe−

τ
2 , |∂yyp̃| � CKε

5
2 −δe−τ .

5.2.  Diffusive subsolution

Since 0 < w(τ , ξ, y) � w̄(τ , ξ, y) � C(ξ + ξδ) for some large C  >  0 and τ � τε, the nonlinear 
term in (10) can be bounded as follows: for any ξ > ξδ > e−

τ
2

e
3
2 τ−ξe

τ
2 w2 � C(ξ + ξδ)e

3
2 τ−ξe

τ
2 w � 2Ce

3
2 τ ξδe−ξδe

τ
2 � 2Ce(1+δ)τe−eδτ w � C0e−( 1

2 −δ)τw

so that a subsolution to (10) is given by

∂τw = Lw + eτ∂yyw − 3
2

e−
τ
2 ∂ξw + C0e−( 1

2 −δ)τw , τ > τε , ξ > ξδ , y ∈ R

w(τ , ξδ , y) = 0 , τ > τε , ξ = ξδ , y ∈ R
w(τε, ξ, y) = w(τε, ξ, y) , τ = τε , ξ > ξδ , y ∈ R.

�
(40)

Let us study its beaviour as τ → +∞. As in the previous section, we simplify the mov-
ing Dirichlet boundary by defining η = ξ − ξδ, τ ′ = τ − τε and set w(τ , ξ, y) = p(τ ′, η, y) = 
p(τ − τε, ξ − ξδ , y). Then, p  satisfies (after dropping the primes) for any τ > 0 , η > 0 and 
y ∈ R,

∂τp = Lp +
eτ

ε2 ∂yyp + ε1−2δe−( 1
2 −δ)τ

(
C0p + (δ − 3

2
ε2δe−δτ )∂ηp

)

p(τ , 0, y) = 0 , τ � 0 , η = 0 , y ∈ R

p(0, η, y) = w(τε, η + ε1−2δ , y) , τ = 0 , η > 0 , y ∈ R.

�

(41)

Choose λ = 1
2 − δ > 0, φε = C0, ψε = δ − 3

2ε
2δe−δτ  uniformly bounded in τ and ε and 

fε = 0. Then, applying theorem 4.1, we have for τ > τε, ξ > ξδ and y ∈ R,

w(τ , ξ, y) = (ξ − ξδ)

(
e−(ξ−ξδ)

2/4
√

2
√
π

(
αc(τ − τε, y) + β(τ − τε, y)

)
+ e−

λ
2 (τ−τε)q̃(τ − τε, ξ − ξδ , y)

)
;

where for any τ > 0 and y ∈ R:

∂ταc =
eτ

ε2 ∂yyαc , αc(0, y) =
1√
2
√
π

∫ +∞

0
η w(τε, η + ε1−2δ , y)dη;

and for any τ > 0,

‖β(τ)‖L∞(R) � Cε1−2δ , ‖∂τβ(τ)‖L∞(R) � Cε1−2δ

‖∂yβ(τ)‖L∞ � Cε2−2δe−
τ
2 , ‖∂yyβ(τ)‖L∞ � Cε3−2δe−τ ;
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and for any τ > 0, ξ ∈ K  compact set of R+, y ∈ R

max (|q̃(τ , ξ, y)|, |∂τ q̃| , |∂ξq̃| , |∂ξξq̃|) � CKε
1
2 −δ

|∂yq̃| � CKε
3
2 −δe−

τ
2 , |∂yyq̃| � CKε

5
2 −δe−τ .

5.3. The proof of theorem 1.2

It is now, just a matter of applying the preceding sections in the right order. Note that we have 
for any τ > τε, ξ > ξδ and y ∈ R,

0 � w(τ , ξ, y)− w(τ , ξ, y) � Cε1−2δ .

Define u+ and u+ the function corresponding to w(τ , 0, y) and w(τ , 2ξδ , y) in the moving 
frame (see (7) to (9)):

u+(t, y) = e−tδ t1/2w(ln t, 0, y), u+(t, y) = e−δt1/2w(ln t, 2t−( 1
2 −δ), y).

Both u+ and u− have the form (20), with estimate (19) and assumptions (13) and (14). Indeed, 
(dealing for instance with u+, and the same holds for u+)

u+(t, y) = tδe−tδ−1/4t1−2δ a(t, y) + b(t, y)√
2
√
π

where a(t, y) = αc(ln(tε2), y) satisfies ∂ta = ∂yya  for any t  >  1 with a(1, y) = αc(0, y) and 
|b(t, y)| � C(ε1−2δ + 1/t

1
4 −δ/2). a  satisfies (13) and (14) thanks to (35). Proposition 3.2 and 

theorem 3.1 therefore imply

Uc∗(x − ln(a(t, y)− Cε1−2δ))− C√
t
� u(t, x, y) � Uc∗(x − ln(a(t, y) + Cε1−2δ)) +

C√
t

|a(t, y)− a(t, y)| � Cε1−2δ .

Now we choose

aε0(y) = a(1, y) = αc(0, y) =
1√
2
√
π

∫ +∞

0
η w(τε, η + ε1−2δ , y)dη,

this finishes the proof.� ■ 

6.  Examples of convergence and nonconvergence

This section is devoted to the consequences of theorem 1.2, i.e the proof of theorem 1.3. We 
will first give an example of nonconvergence by exploiting the fact that some solutions of the 
heat equation do not converge to anything. In the next three sub-sections, we will give various 
cases of convergence: the simplest one is that of an initial datum tending, as |y| → ∞, to a 
unique translate of 1  −  H. The next one is when the initial datum tends to a y-periodic trans-
late of 1  −  H. The last one is when the initial datum tends to two different limits as y → ±∞: 
here, we will still have convergence, but only on compact sets in y.

J-M Roquejoffre and V Roussier-Michon﻿Nonlinearity 31 (2018) 3284



3303

6.1.  Suitably oscillating initial data

The starting point of our construction is the following solution to the standard heat equation—
see [8, 27], where similar phenomena are discussed:

∂ta = ∂yya, or, with the change of variables τ = ln(t) : ∂τα = eτ∂yyα,

with initial datum α(0, y) = a(1, y) = αM(y), M  >  1 will be chosen later. Consider two 
sequences (tn)n∈N and (xn)n∈Z satisfying the following five requirements:

	 1.	 xn = x−n for n ∈ N.
	 2.	The sequences (tn)n∈N and (xn)n∈N are increasing.

	 3.	 lim
n→+∞

xn+1
xn

= +∞.

	 4.	 lim
n→+∞

x2
n

tn
= 0, limn→+∞

x2
n+1
tn

= +∞.

	 5.	For n ∈ N, αM ≡ 1 on (x2n, x2n+1), αM ≡ M on (x2n+1, x2n+2) and αM  even.

An example is tn =
√

n(n!), xn =
√

n!. We then have

lim
n→+∞

a(t2n, 0) = 1, lim
n→+∞

a(t2n+1, 0) = M > 1.� (42)

Indeed, we have for t  >  1 and y ∈ R

a(t, y) =
1√

4π(t − 1)

∫

R
e−(y−y′)2/4(t−1)αM(y′)dy′ =

1√
π

∫

R
e−z2

αM(y + 2z
√

t − 1)dz,

and so, because αM  is even, this reduces to

a(t, 0) =
2√
π

∫ +∞

0
e−z2

αM(2z
√

t − 1)dz.

Now, use the fact that αM(y) = ᾱM ∈ {1, M} on (xn, xn+1):

a(tn, 0) =
2√
π
ᾱM

∫ xn+1/(2
√

tn−1)

xn/(2
√

tn−1)
e−z2

dz +
2√
π

∫ xn/(2
√

tn−1)

0
e−z2

αM(2z
√

tn − 1)dz

+
2√
π

∫ +∞

xn+1/(2
√

tn−1)
e−z2

αM(2z
√

tn − 1)dz.

Because of requirement four and the dominated convergence theorem, the last two terms go to 
zero as n → +∞. And so we have

a(tn, 0) =
2ᾱM√

π

∫ xn+1/(2
√

tn−1)

xn/(2
√

tn−1)
e−z2

dz + on→+∞(1) = ᾱM + on→+∞(1).

This proves (42). Consider now the diffusive super and sub solutions w(τ , ξ, y) and w(τ , ξ, y) 
constructed in section 5, and respectively defined by (38) and (40), with the common initial 
datum at time τ = 0

w(0, ξ, y) = w(0, ξ, y) = λαM(y)(1 − H(ξ)),

where H is the Heaviside function, and λ > 0 will be adjusted as the discussion proceeds. We 
have

(
w(τ , ξ, y), w(τ , ξ, y)

)
= λα(τ , y)

(
W(τ , ξ), W(τ , ξ)

)
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where W  and W  solve, respectively, (38) and (40) with no term ∂yy. From theorem 4.1, there 
is 0 < Λ∞ � Λ̄∞ such that

(
W(τ , ξ), W̄(τ , ξ)

)
→τ→+∞

(
Λ∞, Λ̄∞

)
ξe−ξ2/4.

Notice Λ∞ > 0 since we choose αM � 1 > 0. We choose M  >  0 large enough so that

MΛ∞ > Λ̄∞.

And, finally, we choose λ > 0 such that

u(1, x, y) = e−xλαM(y)(1 − H(x)) � 1 − H(x).

So we have

ū(t, 1, 0) = e−1√t w̄(ln t, 1/
√

t, 0) ∼t→+∞ Λ̄∞e−1λa(t, 0)
u(t, 1, 0) = e−1√t w(ln t, 1/

√
t, 0) ∼t→+∞ Λ∞e−1λa(t, 0).

Because u(t, x, y) � u(t, x, y) � ū(t, x, y) we have, in the end:

lim sup
n→+∞

u(t2n, 1, 0) � λe−1Λ̄∞, lim inf
n→+∞

u(t2n+1, 1, 0) � λe−1MΛ∞.

Thus,

lim inf
n→+∞

u(t2n+1, 1, 0) > lim sup
n→+∞

u(t2n, 1, 0),

which is our counterexample and proves theorem 1.3(1).� ■ 

6.2.  Initial data tending to a limit

Let us consider u0 such that

lim
y→±∞

u0(x, y) = u+0 (x),

uniformly with respect to x ∈ R. Recall that, for compatibility with (2), we should have

1 − H(x − x2) � u+0 (x) � 1 − H(x − x1).

Let u+ (t,x) be the one-dimensional solution of (7) emanating from u+
0  and σ∞ (see (11)) such 

that

u+(t, x) −→t→+∞ Uc∗(x + σ∞).

Standard arguments from the theory of semilinear parabolic equations yield

lim
y→±∞

u(t, x, y) = u+(t, x),

uniformly in x and locally uniformly in t. Let w(τ , ξ, y) be defined by (9), and w+(τ , ξ) be the 
corresponding 1D solution. We still have

lim
y→±∞

w(τ , ξ, y) = w+(τ , ξ),

uniformly in ξ and locally uniformly in τ. Consider

w̃(τ , ξ, y) = w(τ , ξ, y)− w+(τ , ξ),
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and ε > 0. For τ � τε = −2lnε, the function w̃ falls in the assumptions of proposition 3.2. So,

lim
τ→+∞

w̃(τ , ξ, y) = 0,

uniformly in ξ and y. This translates to ũ(t, x, y) = u(t, x, y)− u+(t, x).

6.3.  Initial data that are asymptotically periodic in y

Consider first an initial datum u0(x,y) that is periodic in y. The function αc(τ , y) defined in 
theorem 4.1 tends as τ → +∞ to the average of its initial datum. The ω-limit set of u0 for 
the full system (10) is therefore made up of functions of the form αξ+e−ξ2/4. Because of the 
stability of these functions under the asymptotic equation of (10), the set ω(u0) is made up of 
only one of these functions, say α∞ξ+e−ξ2/4.

Let now be u0(x,y) and u+
0 (x, y) such that

lim
y→±∞

(
u0(x, y)− u+

0 (x, y)
)
= 0, uniformly in x.

Let u+ (t,x,y) be the solution emanating from u+
0 (x, y) and, as before,

ũ(t, x, y) = u(t, x, y)− u+(t, x, y).

Arguing as in the preceding section, we obtain the uniform convergence of ũ to 0 as t → +∞ 
and prove theorem 1.3(3).� ■ 

6.4.  Initial data tending to two different limits

Let us consider u0 such that

lim
y→+∞

u0(x, y) = u+0 (x), lim
y→−∞

u0(x, y) = u−0 (x),

uniformly with respect to x ∈ R. Recall that, for compatibility with assumption (2), we should 
have

1 − H(x − x2) � u+0 (x), u−0 (x) � 1 − H(x − x1).

Let us come back to equation (10). We use the self-similar variable ζ = y√
t , and discover that 

the function αc(τ , ζ) tends, as τ → +∞, to α∞
c , the unique solution of

− d2α∞
c

dζ2 − ζ
2

dα∞
c

dζ = 0, ζ ∈ R
αc(±∞) = e−σ±

∞ .

We have αc(0) = e−σ+
∞+e−σ−

∞
2 , which is the pointwise limit of αc(τ , y). And from theorem 

4.1, we have

lim
τ→+∞

w(τ , ξ, ζ) = α∞
c (ζ)ξ+e−ζ2/4.

Undoing this and reverting to u proves theorem 1.3(2).� ■ 
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